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Eigenenergies and frequencies are obtained for a particle oscillating in the 
potential (1/2)kNx 2~, where k is a constant, x is displacement, and Nis a real 
number. These potentials include the harmonic oscillator (N = 1) and the 
square well (N = ~).  The n th eigenenergy has the form Ann A<n), where 
A(N) = 2N/(N + 1), and AN is independent of n. Application is made to the 
correspondence principle for the potentials N > 1 and it is concluded the 
classical continuum is not obtained in Bohr's limit n -+ ~ .  Complete corre- 
spondence is attained in Planck's limit h --+ 0, so that for these configurations 
the limits h --+ 0 and n ~ ~ are not equivalent. A classical analysis of these 
potentials is included which reveals the relation logs (v/vN) = (N - 1)/2N 
between frequency v and energy E, where the constant vN is independent 
of E. 

1. I N T R O D U C T I O N  

In this pape r  we consider  an infinite class o f  potent ia ls  which in one 
l imit  includes the pa rabo l i c  potent ia l  o f  the ha rmonic  osci l la tor  and  in 
ano the r  limit,  the po ten t ia l  o f  the infinite square well. The val idi ty  o f  the 
Sommerfe ld  quant iza t ion  rules to these configurat ions  is argued and then 
appl ied  to const ruct  the eigenenergies o f  the potent ia ls  considered.  Appl ica-  
t ion o f  these results is made  in evalua t ion  o f  the f requency spectra  o f  the 
var ious  potent ials .  Save for  the case o f  the ha rmonic  oscil lator,  all f requency 
spectra  remain  removed  f rom the zero frequency line by a finite interval  which 
is independen t  o f  quan tum number .  Thus,  the classical spec t rum is not  
ob ta ined  in Bohr ' s  l imit  n--> ~ .  However ,  all spectra  ob ta ined  are seen to 
collapse un i formly  to the classical con t inuum including zero frequency in 
P lanck ' s  l imit ,  h--> 0. Thus for  the infinite class o f  potent ia ls  considered,  
excluding the ha rmonic  osci l lator ,  the limits n--> ~ and  h--> 0 are not  
equivalent .  

185 
0020-7748/79/0300-0185503.00/0 �9 1979 Plenum Publishing Corporation 



186 Liboff 

2. ANALYSIS 

2.1. The Quantum Energy Spectrum. We wish to examine the energy 
spectrum of a particle trapped in the potential well 

k N 
v,,(x) = T x2N (1) 

where k is an effective spring constant and N is a finite numerical constant. 
This potential is of interest to physics because of the following property. 
Namely, since Vz~(k-1/2) = 1/2 for all N, it is evident that V~(x) approaches 
a square well with increasing N. On the other hand, for N = 1, the potential 
V~(x) is the parabola appropriate to the harmonic oscillator. 

Both of these configurations have well-known solutions in quantum 
mechanics (Schiff, 1968). For the harmonic oscillator, eigenenergies are 

E~ 1) = h~o(n + �89 N - -  1 (2) 

~o 2 =- k /m 

whereas eigenenergies for the one-dimensional box are given by 

E~ ~~ = n2E1 N = oo (3) 

E1 = h2/SmL 2, L = 2/k z/2 

So for N = 1, En oc n and for N = o% E.  oz n 2. It is natural then to con- 
jecture that for intermediate N, namely, 1 < N < oo, eigenenergies are given 
by 

E(m ~: ~(m 1 < A(N) < 2 (4) 

with A(N) monotonically increasing with N and ~, where 

~ - n + {  

The validity of this conjecture is established within the accuracy of the 
Sommerfeld quantization rules. 

2.2. The Action Integral. The Sommerfeld quantization rules (Sommer- 
feld, 1915) stipulate that the action variable 

J = f p d x  (5) 

is restricted to discrete values, which for a particle in a well with penetrable 
walls is given by 

J =  h(n + �89 h~ (6) 
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where n is an integer. For the infinite square well (N = co) the correct 
condition is J = nh. In (5), the coordinate x is conjugate to the momentum 
p and the integral is over a cycle of the periodic motion. 

The quantization condition (6) stems from a WKB analysis (Landau 
and Lifshitz, 1958) wherein it is found that this quantization condition is 
valid in the classical limit. Equivalently, it is valid when wavefunction wave- 
length is short compared to potential scale length. In that this wavelength 
diminishes with increasing eigenenergy, the quantization condition (6) will 
be valid for all eigenstates providing it is valid for the ground state. Since this 
is the case for the extreme potentials of the harmonic oscillator (N = 1), and 
the square well (N = ~ )  and furthermore the potential (1) grows flatter at 
the base with increasing N, it is reasonable to assume that the energies 
stemming from (6) are a very good approximation for all N and any n, 
growing still more accurate with increasing n. 

In order to validate the conjecture (4), we must evaluate the integral (5). 
From this result we may obtain the energy as a function of J or, with (6), 
as a function ofn. From the expression for the energy of the particle we obtain 

JN = f d x [ m ( 2 E -  kNx2Z~)] 11~ 

With the substitution 
xk  zl2 = (2E) zI2u sin 0 (7) 

and setting oP _-- k/m, the preceding integral becomes 

J u  = co-  l ( 2 E )  (u + 1)12N ~ dO COS 0(1 -- sin 2N 0) z/2 

Equivalently we may write 

du = 2zr~- 1E(N + 1)/ZNG u (8) 

where Gu is the pure number 

GN =~ 2 (N + I)/2N ~ dO 0)1/~ cos 0(1 - sin 2u (9) 

For example, for N = 1, G1 = 1 and we obtain the well-known result 
appropriate to the harmonic oscillator (Goldstein, 1959), J1 = (2~r/w)E. 

Inverting (8) gives 

E = (oo/2"rrGN) 2wl(N+ 1)J~N/(N+ 1) (10) 

With the quantization rule (6), we obtain 

E,~ = AN(n  + �89 = Au~2m(Y  + l) (11) 

where we have written 

AN -- (hwlGu) ~uI~N+ 1~ (12) 
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From (11) we may conclude that 

E n oc 7t ~m) 

where 
(13) 

2N 
A ( N ) - N +  1 (14) 

This result agrees with a previous calculation of ter Haar  (1964). For N = 1, 
(14) gives A = 1, in agreement with the harmonic oscillator result (2). For 
N--- 0% (14) gives ;~ = 2 in agreement with (3) for the square-well con- 
figuration. For intermediate values 1 < N < oe we see that h(N) is a 
monotonically increasing function of N which satisfies the second equation 
in (4). This observation together with the result (13) establishes the validity 
of  the conjecture (4), to within the Sommerfeld quantization approximation 
(6). 

2.3. The Quantum Frequency Spectra 

The eigenenergies of  a particle in the potential well (1) are given by (11), 

E~ = Anti 2re(N+1) 

where A n ,  as given by (12), is independent of  quantum number n. The fre- 
quencies of emission v for this configuration are given by the Bohr rule 

hv = E~+~ - E~ (15) 

where by selection rules, A is an odd number. This latter equation may be 
rewritten 

A 
v = ~ [(t~ + A) a - ~ ]  (16) 

The question we wish to entertain at this point is, what is the minimum 
quantum frequency which may be emitted by this system? Suppose ~ is a 
continuous parameter. Then differentiation of (16) yields 

dv A A  _ ~ , - 1 ]  > 0 
drT-  h [(n + A )  ~-1 

The inequality follows from the fact that h - 1 > 0, so that v, as given by 
(16), is an increasing function of n. We may conclude that the smallest value 
v can have is given by the first allowed decay to the ground state: 

vmn = ~ I + - > 
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This inequality again follows from the fact that A > 1 so that (1 + �89 > 
1 + �89 whereas (�89 < �89 Thus, the minimum frequency emitted by a particle 
trapped in the potential well VN(x) with N > 1 obeys the inequality 

A 
uMln > ~ > 0 (17) 

Noncorrespondence. The significance of this result is that the emission 
spectrum (16) remains separated from the classical v = 0 value for all transi- 
tions. Therefore the classical spectrum which densely fills a domain about 
and includes the v = 0 value is not contained in the spectrum of the potential 
VN(X ) for N > 1. 

On the other hand in the high quantum number limit, we see from (16), 
with A = 1, 

h A ( A -  1)n a-2 (18) 3v 

It follows that for ,/ < 2, ~v ~ 0 with increasing n, resulting in a continuous 
spectrum. The complete spectrum remains separated from the origin by 
V~ln > 0. 

We may conclude that the quantum frequency spectrum (16) only 
partially coalesces with the classical spectrum in the limit of large quantum 
numbers. The potential configurations (1) then serve as counterexamples 
(Liboff, 1975) to the Bohr correspondence principle, which states that the 
classical frequency spectrum is obtained from the quantum spectrum in the 
limit of large quantum numbers (Bohr, 1914, 1920; van der Waerden, 1968; 
Jammer, 1966). 

However, from (12) and (17) we find 

l~Mi n OC A/h oc h (N- 1)1(~,+ 1) (19) 

so that for N > 1, vMln -+ 0 with h. Furthermore, from (18), we see that the 
separation of frequency 3v also is proportional to A/h. We may conclude that 
the quantum spectrum (16) collapses to the classical continuum including 
the v = 0 value, in Planck's limit h-->0 (Planck, 1906; Jammer, 1966). 
Furthermore, regarding the emission spectrum from a particle trapped in the 
potential well (1), with N > 1, we see that the limits h -+ 0 and n -~ oo are not 
equivalent. 

2.4. The Classical Continuum 

In this section we wish to establish that the classical frequency spectrum 
for the potential (1) comprises a continuum including the value v = 0. It 
suffices to show that v varies continuously with energy and includes the value 
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v = 0. To these ends we recall Hamilton's equation of motion (Goldstein, 

1959) for the angle fvdt, 

eE(J) 
e--T- = v ( 2 0 )  

The relationship between E and J was previously obtained and is given in (8). 
There results 

[ d J ]  -1 o., 2 N  E(N_I)I2s_  vNE(S_l)/~ u (21) 
v = \ d E  ] = 2,rGu N +~----1 

Only for the harmonic oscillator, N -- 1, is frequency independent of energy. 
For all other N, the minimum frequency v = 0, is attained when E = 0. The 
frequency then increases with E, since ( N -  1)/2N > 0. For N = m one 
obtains 

v oc l IE  1/2 

which is appropriate to the particle in a square well or a rigid rotator. 
The actual classical emission spectrum of a particle oscillating in the 

potential well (1), N > 1, is comprised of the fundamental (21) and subse- 
quent harmonics. This property follows from the observation that the orbit 
x( t )  is symmetric about x = 0 and has period v-~. Therefore Fourier expan- 
sion of x( t )  contains the fundamental (21) and subsequent harmonics. These 
frequencies are dependent on E, or equivalently, initial conditions, and yield 
a continuous spectrum. 

3. CONCLUSIONS 

The eigenenergies and emission frequencies for the potential (1) have 
been obtained for all N, within the framework of the Sommerfeld quantization 
rules. Eigenenergies are given by (11) 

2N 
En = Ad~ ~(m, A(N) - N + 1 

which for N = I, reduces to the energy spectrum of the harmonic oscillator 
and for N = oo, reduces to the energy spectrum of the box with rigid walls. 
The frequency spectrum is given by (16). In the limit of large quantum 
numbers this spectrum includes a continuum which is separated from the 
v -- 0 value by Urea > 0 as given by (17), and passing to the limit of large n 
does not secure the classical continuum. Correspondence is found to be 
obeyed, on the other hand, in Planck's limit, h--> 0. In this limit the total 
spectrum becomes continuous beginning at v = 0. 

A relation is also obtained (21) for the energy dependence of the classical 
frequency for a particle in the potential (1). The form of this relation indicates 
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that  only for the harmonic  oscillator (N = 1) is frequency independent  of 

energy. 
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